SUCK CREEK STREAM RESTORATION (Project No. 0117950008)

MONITORING YEAR 3 of 5 (2006)

Submitted

January 2007

Submitted to:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

TABLE OF CONTENTS

I. Exe	ecutive Summary1
II. Pro	ject Background2
2. P 3. L 4. P	roject Objectives
III. Pro	oject Condition and Monitoring Results
1 2	Vegetation Assessment
1 2 3 4 5 6 7	Stream Assessment 16 . Procedural Items 16 . Hydrologic Criteria 16 . Stream Problem Areas Plan View 16 . Stream Problem Areas Table 16 . Number Issue Photos Section 17 . Fixed Station Photos 17 . Stability Assessment 17 . Quantitative Measures Summary Tables 18
IV. M	ethodology Section22
	Figures
Figure	2: Monitoring Plan

TABLE OF CONTENTS (continued)

Tables

Table I:	Project Mitigation Objectives Table	3
Table II.	Project Activity and Reporting History	5
Table III.	Project Contact Table	5
Table IV.	Project Background Table	6
Table V.	Stem Counts for Each Species Arranged by Plot and Location – Based on	
	Data collected Using the EEP Stem Counting Protocol	15
Table VIa.	Categorical Stream Feature Visual Stability Assessment – Upper Reach	17
Table VIb.	Categorical Stream Feature Visual Stability Assessment - Lower Reach	17
Table VII.	Baseline Morphology and Hydraulic Summary	19
Table VIII.	Morphology and Hydraulic Monitoring Summary	21

Appendices

Appendix A

- 1. Vegetation Data Tables
- 2. Vegetation Problem Area Photos
- 3. Vegetation Monitoring Plot Photos

Appendix B

- 1. Stream Gauge Data
- 2. Problem Areas Plan View (Stream)
- 3. Table B.1 Stream Problem Areas
- 4. Representative Stream Problem Area Photos
- 5. Stream Photo-Station Photos
- 6. Table B.2. Qualitative Visual Stability Assessment
- 7. Cross Section Plots and Raw Data Tables
- 8. Longitudinal Plots and Raw Data Tables
- 9. Pebble Count Plots and Raw Data Tables

I. Executive Summary

The objective of the Suck Creek stream restoration project, implemented in 2003, was to restore an unstable, degraded stream corridor and adjacent riparian zones to a stable condition that supports high quality in-stream and riparian habitat. The design integrated design goals with site constraints, such as the need to maintain access to surrounding cattle pastures, and the requirements of local agencies, such as ensuring public safety. Design elements included: (1) constructing 3,260 feet of channel with a stable dimension, pattern and profile; (2) installing in-stream structures such as log vanes, J-hook vanes, cross vanes, root wads, and boulder clusters; (3) planting the stream banks and adjacent 7.8 acres of riparian buffer with native plant species; (4) installing fencing to exclude cattle from the restored area; and (5) creating stable road crossings to allow access to adjacent pasture lands. Construction was completed in April 2003, the as-built survey was completed June 2003, and the riparian buffer was planted in February 2004. Year 1 Monitoring was conducted in October 2004. Year 2 monitoring was conducted in September 2005. The Year 3 monitoring provided in this report was conducted in August 2006.

The stream restoration component of the project involved implementing a Priority I Restoration method to create a more stable C4 stream type. Based on the findings of the 2006 monitoring effort summarized in this report, the restored reaches are predominantly stable. Localized areas of bank erosion and bed aggradation in the form of mid-channel bars were observed within the restored channel. Cross vane structures are functioning properly or have reduced function but structure repairs are not recommended at this time. The majority of cross vane structures are functioning properly; maintenance is recommended for only two of the vanes. All of the log vane structures are functioning adequately. The mean particle size of mobile sediment in the upper reach has decreased (from $D_{50} = 7.3$ mm. to $D_{50} = 0.7$ mm). The mean particle size of mobile sediment in the lower reach has not significantly changed An extensive mid-channel bar has continued to form just downstream of the boulder field in the upper reach.

Vegetation representing local riparian communities was planted to provide additional stability to the stream banks and establish a riparian buffer. The planted riparian vegetation onsite is well established on the stream banks and in the riparian corridor. Total cover by herbaceous plants is 99 percent. Predominant species are tall wormwood (*Artemisia caudata*) and whorled coreopsis (*Coreopsis verticillata*). Woody stem growth is most dense on the stream bank and becomes sparse in outlying riparian areas. Volunteer black willow and river birch root sucker stems account for the majority of woody stems. The woody stem density for the riparian buffer exceeds the success criteria of 260 stems/acre.

There is no wetland component to this mitigation site.

II. Project Background

1. Project Objectives

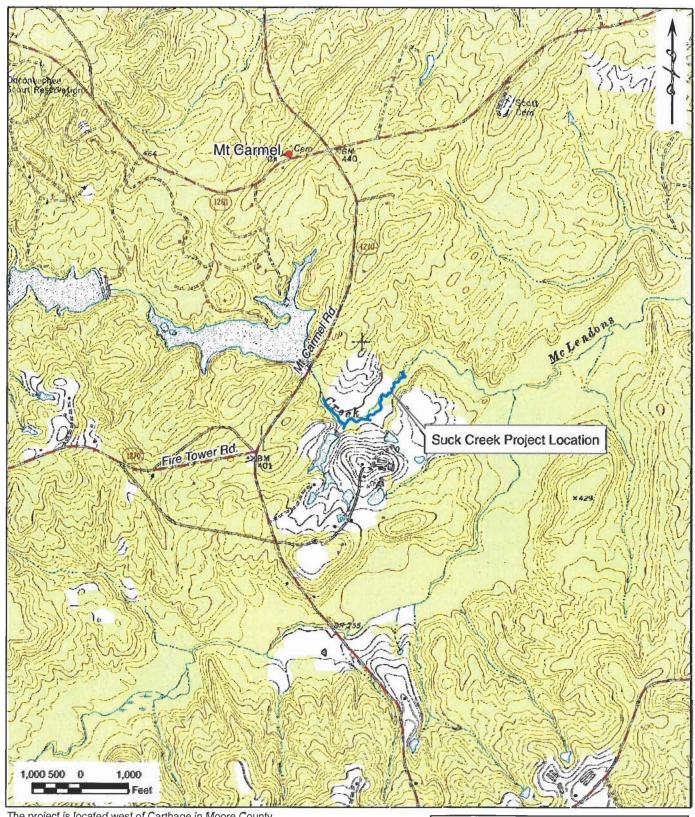
The goal of the project was to transform the pre-existing altered stream corridor to a more stable and biologically active form through the following objectives:

- Restore 3,260-linear feet of Suck Creek through geomorphic modification through dimension, pattern and profile adjustments, and cattle exclusion;
- Establish a riparian zone (7.8 acres) surrounding restored sections of Suck Creek;
- Improve the habitat within the channel and riparian zone;
- Provide cattle exclusion fencing and controlled crossings to protect restoration effort; and
- Provide perpetual protection of the riparian area and stream with a conservation easement.

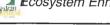
2. Project Structure, Restoration Type, and Approach

The pre-restoration channel was incised with unstable banks. Using reference data from regional curves and appropriate reference reaches, the channel geometry was modified to produce a more stable C4 stream type, as defined by Rosgen (Rosgen 1994). In accordance with the Priority 1 Restoration method, the stream bed was elevated to reconnect it to its abandoned terrace, increasing available flood prone area to near pre-existing conditions. The result of the restoration effort is an increase in the width to depth ratio and reduced bank height ratios, thus improving channel stability. The sinuosity of the reach was also increased which resulted in a decreased mean slope. The decreased mean slope reduces the stream velocities of bankfull events that should also increase stream stability. In-stream structures including rock cross vanes, root wads and log vanes were incorporated into the channel. A vegetative buffer was planted along the stream corridor to further stabilize the stream banks, improve habitat conditions, and reduce ambient water temperature. Stream channel construction was completed in April of 2003 and the vegetated buffers were planted in February 2004. Stream and buffer restoration areas are surrounded by fencing and are protected by a conservation easement.

Suck Creek was restored through the North Carolina Ecosystem Enhancement Program (EEP) – formerly Wetlands Restoration Program (NCWRP). This is the Year 3 monitoring report for Suck Creek.


Table I provides information on the project structure and objectives.

	s			Project Mitig eam Restora				
Project Segment or Reach 1D	Existing Feet/Acres	Type	Approach	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing	Comment
Upper Reach	NA	R	P1	875 Lf	1.0	875	0+00 - 08+75	Restore dimension, pattern, and profile
Lower Reach	NA	R	P1	2,088 Lf	1.0	2,088	08+75 - 29+63	Restore dimension, pattern, and profile
Riparian Buffer Area	n NA	R	SS	7.8 Ac.	1.0	7.8	NA	Restore riparian and wetland community
Mitigation Unit Sur	nmations							1
Stream (If)	Ripari Wetland			nriparian tland (Ac)		Wetland Ac)	Buffer (Ac)	Comment
2,963							7.8	
R= Restoration	n	EII =	= Enhan	cement II	I	P1 = Priorit	y I Pi	3 = Priority III
EI = Enhanceme	nt I	S	= Stabil	ization	F	P2 = Priority	v []	= Stream Bank stabilization


3. Location and Setting

The Suck Creek Stream Restoration Project site lies within the Richardson Farm in Moore County, North Carolina. The stream drains a portion of the Deep River Subbasin (USGS Hydrologic Unit 03030003) and North Carolina Department of Water Quality (NCDWQ) Subbasin 03-06-10 of the Cape Fear River Basin. The project watershed consists of mainly of agricultural lands.

The Suck Creek site is located south of SR1261 and east of SR1210. Access to the site is provided via an access road on Richardson Farm. At the downstream terminus, the stream drains a 4.8 mile watershed that includes several impoundments. A vicinity map with directions to the site is provided in Figure 1.

The project is located west of Carthage in Moore County. From Raleigh, follow US-1 south to US-15/501 toward Carthage. When approaching Carthage, take NC-24/ Monroe Street into downtown. Follow through the downtown traffic circle to Dowd Road / SR 1240. Take Dowd Road west away from Carthage for approximately 1.5 miles. Take a right onto Beulah Hill Church Road / Mt. Carmel Road (SR 1210). After approximately 1.5 miles, turn right onto Richardson Farm Road (SR 1290) – a gravel road. Follow Richardson Farm Road to the primary residence and then turn left onto a gravel road. Follow the gravel road past the cattle nursery and chicken barns. The upper section of the project stream is located at the bottom of the hill. Please note that this is a private residence and permission is requested prior to entering the site.

Ecosystem Enhancement Program

FIGURE 1 PROJECT VICINITY MAP

Suck Creek Stream Restoration Project No. 011795008 Monitoring Year 2 of 5 Moore County, North Carolina

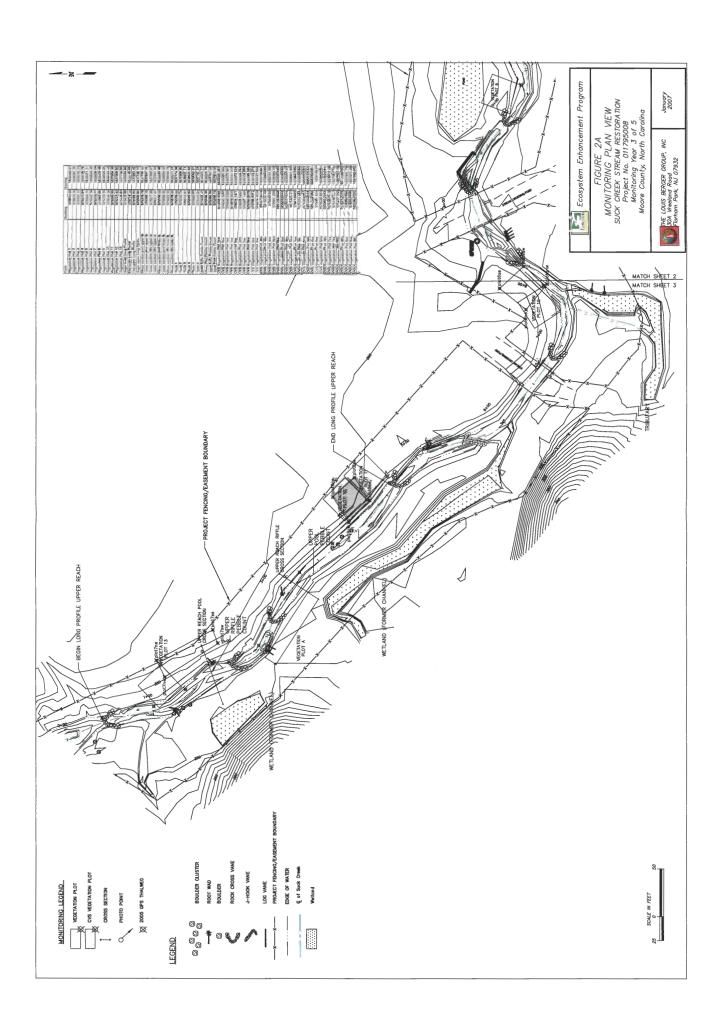
THE LOUIS BERGER GROUP, INC 30A Vreeland Road

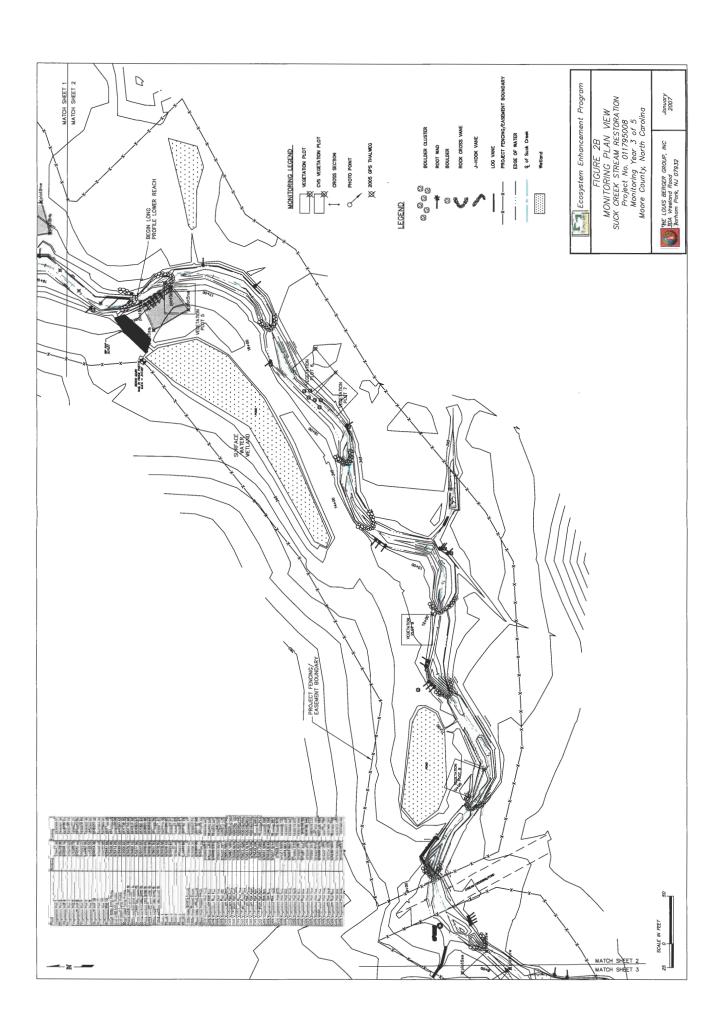
January 2007

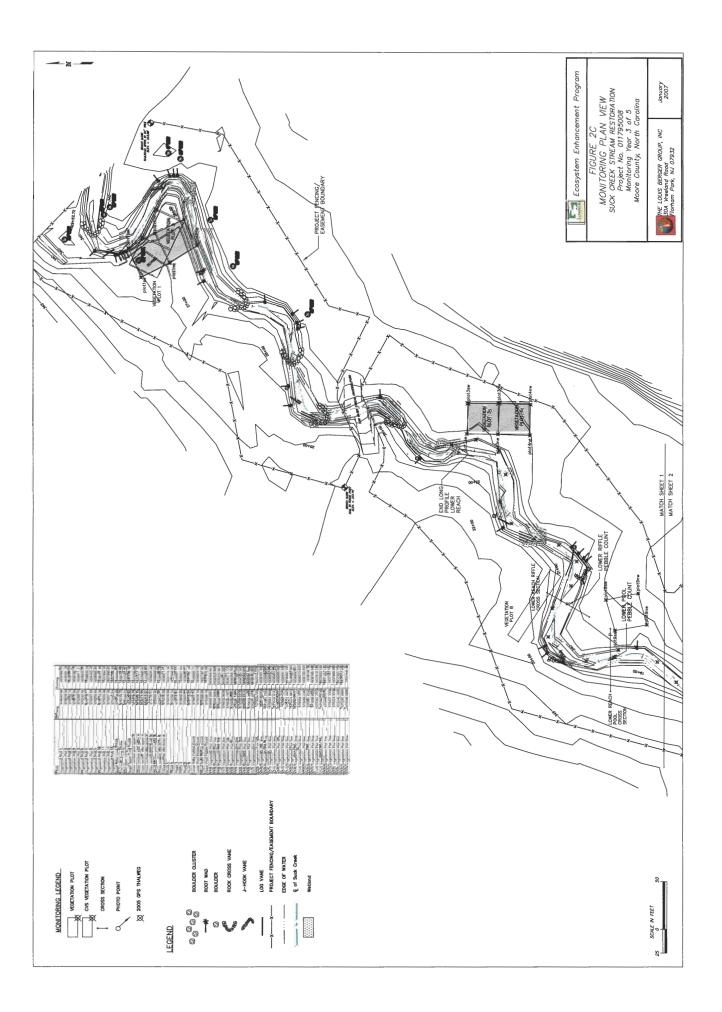
4. Project History and Background

Project activity and reporting history are provided in Table II. The project contact information is provided in Table III. The project background history is provided in Table IV.

	ty and Reporting History ation: Project No. 0117950008	
Activity or Report	Data Collection Complete	Actual Completion or Delivery
Restoration Plan	N/A	N/A
Final Design - 90%	N/A	2002
Construction	N/A	Apr-03
Temporary S&E mix applied to entire project area	N/A	N/A
Permanent seed mix applied to reach/segments 1 & 2	N/A	Apr-03
Containerized and B&B plantings for reach/segments 1 & 2	N/A	Feb-04
Mitigation Plan / As-built (Year 0 Monitoring - Baseline)	Mar-04	Jul-04
Year I Monitoring	Oct-04	Dec-04
Year 2 Monitoring	Sep-05	Dec-05


N/A: Historical project documents necessary to provide this data were unavailable.


Suck Creel	Table III. Project Contact Table Stream Restoration: Project No. 0117950008
Designer: Kimley-Florn and Associates, Inc.	P.O. Box 33068, Raleigh, NC, 27636 Mr. Will Wilcham, Phone: (919) 677-2000
Construction Contractor: Shanrock Environmental Corporation	PO Box 14987, Greensboro NC 27415 Mr. Bill Wright
Planting Contractor: Shamrock Environmental Corporation	PO Box 14987, Greensboro NC 27415 Mr. Bill Wright
Seeding Contractor: Shamrock Environmental Corporation	PO Box 14987, Greensboro NC 27415 Mr. Bill Wright
Seedmix Sources: Ernst Crownvetch Farms	9006 Mercer Pike, Meadville, PA 16335 (814) 336-2404
Nursery Stock Suppliers: Hillis Nursery Company	92 Gardner Rd., McMinnville, TN 37110 (931) 668-9125
Monitoring Performers:	
Year 1 Monitoring (stream and vegetation): Kimley-Horn and Associates, Inc.	P.O. Box 33068, Raleigh, NC, 27636 Mr. Will Wileham, Phone: (919) 677-2000
Year 2 Monitoring (stream and vegetation): The Louis Berger Group, Inc.	1513 Walnut Street, Suite 250, Cary, NC, 27511 Mr. Ed Samanns, Phone: (973) 765-1800


	Background Table ation: Project No. 0117950008
Project County	Moore
Drainage Area of Upper Reach	4.7 sq. miles
Drainage Area of Lower Reach	4.8 sq. miles
Drainage Area Impervious Cover Estimate (%)	<2 percent
Stream Order	2
Physiographic Region	Piedmont
Ecoregion	Sand Hills
Rosgen Classification of As-built	C4
Cowardin Classification	Riverine Upper Perennial Stream Bed Sand Substrate (R3SB2) Lotic System
Dominant Soil Types	Chewacla silt loam, Tetotum silt loam
Reference Site ID	Upstream of project site and Richland Creek
USGS HUC for Project and Reference	3030003
NCDWQ Sub-Basin for Project and Reference	03-06-10
NCDWQ Classification for Project and Reference	C
NCDWQ Classification of Reach 1	C
NCDWQ Classification of Reach 2	С
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a 303d listed segment?	No
Reasons for 303d listing or stressor	
% of project easement fenced	100%

5. Monitoring Plan View

The monitoring plan view is included as Figure 2.

III. Project Condition and Monitoring Results

A. Vegetation Assessment

1. Vegetative Problem Areas

Vegetative Problem Areas are defined as either lacking vegetation or containing exotic vegetation. No problem areas were identified during Monitoring Year 3. Problem areas reported in previous years had become colonized with herbaceous vegetation.

2. Vegetative Problem Area Plan View

The location of each vegetative problem area is shown in Appendix A.

3. Stem Counts

Vegetation monitoring in Year 3 was conducted using two sampling methodologies: EEP Stem Counting Protocol and the CVS-EEP Protocol for Recording Vegetation (Levels 1 & 2). The EEP Stem Counting Protocol was used to collect data for comparison with Year 2 vegetation monitoring results since this methodology was used in Year 2. EEP Stem Count plot numbers and locations for this years monitoring were the same as the previous year. CVS-EEP vegetation plots (3,4) were located atop of the EEP Stem Count plots (3,4). Other CVS-EEP plots (1,2,5,6,7,8) where set across portions of the EEP Stem Count plots (1,2,5,10,11,12,13), and one CVS-EEP plot (9) was set outside of any previous vegetation monitoring plots. The data summary of woody stem density onsite described below was collected using EEP Stem Counting Protocol. The data summary generated using the CVS-EEP protocol is provided in Appendix A.

Based on the data collected using the EEP Stem Counting Protocol, all of the 13 plots had stem densities above the success criteria of 260 planted trees per acre. The average tree density for the entire site exceeded the success criteria at 1,042 trees per acre. Recruitment of volunteer species has significantly increased stem densities site-wide; with root suckering of river birch along the stream bank accounting for the majority of volunteer stems.

Within each plot, woody stem densities were higher along the stream banks because of regeneration from live stakes and root suckering of river birch. Stem density rapidly decreased with distance away from the stream banks. The most common woody plants recorded away from the stream banks included: sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*) and sweet gum (*Liquidambar styraciflua*). These woody stem species are often taller than the herbaceous growth within this area. All of last year's red stem dogwood (*Cornus stolonifera*) were identified this year, correctly, as silky dogwood (*Cornus amomum*).

Thick herbaceous growth covers nearly all of the stream banks and riparian zone. The herbaceous growth is dominated by tall wormwood (*Artemisia caudata*) and whorled coreopsis (*Coreopsis verticillata*).

A summary of stem count data collected using the EEP Stem Counting Protocol is provided in Table V. The results of the vegetation monitoring conducted using the CVS-EEP Protocol is provided in Appendix A.

Table V. Stem Counts for Each Species Arranged by Plot and Location – Based on Data collected Using the EEP Stem Counting Protocol Suck Creek Stream Restoration: Project No. 0117950008	Counts	for Eacl	1 Specie	s Arrang Suck C	ged by F	Arranged by Plot and Location – Based on Data collected Suck Creek Stream Restoration: Project No. 0117950008	Location	n – Base n: Proje	d on Dat	ta collec 1179500	ted Usin	g the EE	P Stem	Counting	Protocol	
							Plots							Year 3	Year 2	%
Species	1	2	3	4	5	9	7	80	6	10	11	12	13	Totals	Totals	Survival
Shrubs																
Alnus serrulata ¹							1		3	2		1		7	7	100
Baccharis halimifolia								1			1			2	0	
Celtis laevigata ¹										1				1	0	
Cornus amomum						3	9		1	2			3	15	0	
Cornus stolonifera						1								1	23	4
Ligustrum vulgaris	1													1	0	
Oxydendrum arboreum'														0	3	0
Trees																
Acer rubrum'		2	2											4	1	100
Betula nigra	7	1	2			7	9		~	19	36	84	25	195	150	100
Diospyros virginiana													1	1	0	
Fraxinus pennsylvanica			1		9							1		8	4	100
Liquidambar styraciflua'	2	1	1						4	2		5	2	17	24	71
Liriodendron tulipifolia														0	0	
Nyssa sylvatica	-	1									1	1		4	0	
Pinus taeda	-		3	4			2		1	2				13	2	100
Platanus occidentalis	2	1					1		2	5			18	29	36	80
Prunus serotina							1							1	0	
Quercus phellos														0	2	0
Salix nigra	2		5		-	3	9	8	8	2			1	36	50	72
Total Stems	17	8	17	8	12	20	30	17	36	45	49	104	63	335	302	
Stem Density	889	323	889	323	485	808	1,214	889	1,457	1,821	1,983	4,210	2,550			
	7	17.	mil manuar .	040 = =												

¹Volunteer or sapling vegetation found within sampling plots.

B. Stream Assessment

1. Procedural Items

During the Year 2 (2005) field sampling effort at the lower pool cross section, the right bank stake could not be found. The field crew used a sub-meter accurate GPS unit to locate to the approximate coordinates of the previous year's location. When the stake location could not be located, a new end point was created. Conduit was driven into the ground to mark the location, GPS coordinates were established at the location of the installed conduit, the elevation of the top of conduit was established using a laser level and rod (tied into the permanent benchmark located on-site) and the cross section was surveyed. This same cross section location was used during Year 3 monitoring.

2. Hydrologic Criteria

A stream gauge was installed the first week in August 2006. Since a full year of hydrologic data was not collected, this criteria was not evaluated for the full Year 3 monitoring period. During the period of available data (August – October 2006) no bankfull events were recorded. A graphic of the data collected is provided in Appendix B.

3. Stream Problem Areas Plan View

The position of each structural problem area is shown in Appendix B.

4. Stream Problem Areas Table

There were no new problem areas identified during Year 3 monitoring. All Year 2 problem areas were unchanged, had not degraded further, or herbaceous vegetation had established on the problem area. The root wad failure at Station 19+10 has stabilized and vegetated and is not considered a problem area. This area will be looked at in future monitoring to track its stability. A summary of the problem structures observed during Year 3 monitoring with notes about each structures status is provided in Appendix B.

Maintenance is recommended on the cross vanes at Stations 21+60 and 26+60 since scour between and around individual rocks in the arm is extensive and the arm of the structure is not creating a bar behind the structure of any kind. Sediment has deposited atop the vane arms and has become vegetated. Piping between vane rocks still continues.

The mid-channel bar downstream of the boulder field (Stations 4+00 to 4+60) has become vegetated with rice cutgrass (*Leersia oryzoides*). This feature likely occurs because of unfocused velocity, down stream of the boulder field, and too slight a water surface slope. Low water levels due to the late summer drought may have also created shallow water conditions conducive for the germination and establishment of rice-cut grass. No maintenance actions are recommended at this time.

The root wad failure at Station 19+10 that caused bank erosion last year has stabilized. The banks and fabric matting have formed a vegetated slumping bank.

5. Number Issue Photos Section

A photograph of each structural problem area is provided in Appendix B.

6. Fixed Station Photos

Photographs taken at each established photograph station are provided in Appendix B.

7. Stability Assessment

H. Wads and Boulders

A semi-qualitative summary of results from the visual inspection is proved in Table VIa for the Upper Reach and Table VIb for the Lower Reach.

Table VIa. Categorica Suck Cre	al Stream Fea eek Stream R		-			each
	Segment	Reach: Up	per Reach			
			114 6 10			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	N/A	N/A	88	88		
B. Pools	N/A	N/A	88	88		
C. Thalweg	N/A	N/A	100	100		
D. Meanders	N/A	N/A	100	100		
E. Bed General	N/A	N/A	99	99		
F. Bank Condition	N/A	N/A	96	96		
G. Vanes / J Hooks etc.	N/A	N/A	100	100		

N/A N/A: Historical project documents necessary to provide this data were unavailable at the time of this report submission.

100

100

N/A

Table VIb. Categorical S			•			each
Suck Creek			Project No wer Reach	. 011/9500	ua	
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	N/A	N/A	93.5	93.5		
B. Pools	N/A	N/A	100	100		
C. Thalweg	N/A	N/A	100	100		
D. Meanders	N/A	N/A	99	99		
E. Bed General	N/A	N/A	100	100		
F. Bank Condition	N/A	N/A	100	100		
G. Vanes / J Hooks etc.	N/A	N/A	85	85		
H. Wads and Boulders	N/A	N/A	96	96		

N/A: Historical project documents necessary to provide this data were unavailable at the time of this report submission.

8. Quantitative Measures Summary Tables

Graphic interpretations of cross sections, profiles and sediment distributions are shown in Appendix B. A summary of geomorphic measurements is shown in Table VII and Table VIII.

		Table VII. Baseline M.	Table VII. Baseline Morphology and Hydraulic Summary	Summary					
		Suck Creek Stream K	Suck Creek Stream Restoration: Project 190, 011/920008 Segment/Reach: Entire Reach	1/950008					
Parameter	USGS Gage Data	Regional Curve Interval	Pre-Existing Condition	Project Reference Stream	Design	us		As-built	
Dimension	Min Max Med	Min Max Med	Min Max Med	Min Max Med	Min Max	x Med	Min	Max	Med
BF Width (ft)					15 20	N/A	N/A	N/A	21.2
Floodprone Width (ft)									
BF Cross Sectional Area (ft²)					18 36		N/A	N/A	18.1
BF Mean Depth (ft)					1.2 1.8	N/A	N/A	N/A	1.3
BF Max Depth (ft)					1.8 2.9		N/A	N/A	2.2
Width/Depth Ratio					12.5 11.1	l N/A	N/A	N/A	16.3
Entrenchment Ratio					N/A N/A		N/A	N/A	N/A
Bank Height Ratio							N/A	N/A	N/A
Wetted Perimeter (ft)							N/A	N/A	N/A
Hydraulic Radius (ft)					N/A N/A		N/A	N/A	N/A
Pattern					The state of the s				
Channel Beltwidth (ft)						N/A	20	104	N/A
Radius of Curvature (ft)					32 69		35	55	N/A
Meander Wavelength (ft)					130 265	A/N	120	265	N/A
Meander Width ratio									
Profile									
Riffle length (ft)							10	42	N/A
Riffle slope (ft/ft)					.45 1.0		0.5	1.0	N/A
Pool length (ft)					N/A N/A		20	128	N/A
Pool spacing (ft)					60 140	A/N	54	171	N/A
Substrate									
(mm) d20					N/A N/A	A/N A	8.0	20	N/A
d84 (mm)					N/A N/A	A/N A	10	34	N/A
Additional Reach Parameters									
Valley Length (ft)									
Channel Length (ft)									
Sinuosity									
Water Surface Slope (ft/ft)									
BF slope (ft)									
Rosgen Classification									
*Habitat Index									
*Macrobenthos									

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria N/A: Historical project documents necessary to provide this data were unavailable.

Page 16

							Suck	III. Mo Creek S	rpholog tream R	gy and Hydraulic Restoration: Pro Segment/Reach:	lydrauli ion: Pro Reach:	Table VIII. Morphology and Hydraulic Monitoring Summary Suck Creek Stream Restoration: Project No. 0117950008 Segment/Reach:	ring Su 011795	mmar; 0008										
Parameter		Cross	Section	Cross Section 1 Upper Pool	Pool			Cross	Cross Section 2 Upper Riffle	Upper P	Siffle			Cross 2	section 3	Cross Section 3 Lower Pool	loc		Ü	ross Sect	ion 4 Lo	Cross Section 4 Lower Riffle	e	
																	N 40 6							
Dimension	MYI	MY2	MY3	MY4	MY5	MY^+	MY1	MY2	MY3	MY4	MY5	MY+	MY1 N	MY2 N	MY3 M	MY4 M	MY5 M	MY+ M	MY1 M	MY2 N	MY3 N	MY4 M	MY5 N	MY+
BF Width (ft)	27.3	26.2	24.7				21.2	19.2	17.0				31	9.6	10.5			2(20.7	9.91	9.91			
Floodprone Width (ft)	N/A	N/A	N/A				N/A	N/A	N/A				N/A	N/A	N/A			Z	N/A	N/A	N/A			
BF Cross Sectional Area (ft²)	34.3	32.5	28.8				18.1	15.2	15.7				33	13.4	11.4			2.	27.4 2	20.9	20.5			
BF Mean Depth (ft)	1.8	1.2	1.2				6.0	8.0	6.0				1.1	1.4	1.1			1	1.3	1.3	1.2			
BF Max Depth (ft)	2.8	2.7	2.7				1.6	1.6	1.6				2.8	9.1	1.4			2	2.2	2	1.9			
Width/Depth Ratio	7.4	21.1	21.1				25	24.2	18.5				29.2	7.3	2.6		_	1;	15.6	13.2	13.4			
Entrenchment Ratio	2.1	N/A	N/A				2.8	N/A	N/A				2.5	N/A	N/A			3	3.2 N	N/A	N/A			
Bank Height Ratio	N/A	1.24	1.2				N/A	2.04	2.05				N/A	2.71	3.1			z	N/A	1.6	2.02			
Wetted Perimeter (ft)	N/A	27.3	25.8				N/A	19.7	17.6				N/A	11.7	12			z	N/A	13.2	17.7			
Hydraulic Radius (ft)	N/A	1.2	1.1				N/A	8.0	6.0				N/A	1.1	6.0			Z	N/A	1.2	1.2			
Substrate																								
d50 (mm)	17.9	14.8					13.2	7.3	0.7				8.0	8.0				2	20 (0.7	0.5		+	
d84 (mm)	32	32					30.8	34	23				10	0				33	33.4	2	133		_	

Parameter		MY-01 (2004)			MY-02 (2005)			MY-03 (2006)			MY-04 (XXXX)			MY-05 (XXXX)			MY+ (XXXX)	
Upper Reach																		
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel beltwidth (ft)	21	66	N/A	13	27	20	13	27	20									
Radius of curvature (ft)	32	69	N/A	30	33	31.5	30	33	31.5									
Meander wavelength (ft)	130	265	N/A	141	160	150	141	160	150									
Meander width ratio	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A									
Profile																		
Riffle length (ft)	10	42	N/A	32	75	53.5	11	26	18.5									
Riffle slope (ft/ft)	0.5%	1.0%	N/A	60.0	0.1	0.01	0.38	0.41	0.40									
Pool length (ft)	20	128	N/A	18	45	31.5	99	98	71									
Pool spacing (ft)	54	171	N/A	89	88	78	64	66	81.5									
Lower Reach																		
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel beltwidth (ft)	21	66	N/A	13	27	20	13	27	20									
Radius of curvature (ft)	32	69	N/A	30	33	31.5	30	33	31.5									
Meander wavelength (ft)	130	265	N/A	141	160	150	141	160	150									
Meander width ratio	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A									
Profile																		
Riffle length (ft)	10	42	N/A	56	56	41	21	27	24									
Riffle slope (ft/ft)	0.5%	1.0%	N/A	0.03	0.08	0.055	0.021	0.07	0.046									
Pool length (ft)	20	128	N/A	20	34	27	35	77	56									
Pool spacing (ft)	54	171	N/A	83	123	103	84	119	101.5		,							

Additional Reach Parameters Valley length (ft) Channel length (ft) Sinuosity Water surface slope (ft)th Bankfull slone (ft)th	NY-01 (2004) N/A N/A N/A N/A N/A N/A N/A N/	Table VIII. Morphole Suck Creek 3 Suck Creek 3 Lower/Upper 411/386 515/408 1.25/1.05 0.0022/0.0017	Table VIII. Morphology and Hydraulic Monitoring Summary - Continued Suck Creek Stream Restoration: Project No. 0117950008 Segment/Reach: Segment/Reach:	Summary – Continued . 0117950008 MY-04 (XXXX)	MY-05 (XXXX)	MY+ (XXXX)
Rosgen Classification	cs	CS	SS			
*Habitat Index	N/A	N/A	N/A			
*Wacrobenthos	A/N	4/2	A/A			

*Macrobenthos | N/A | Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria | N/A: Historical project documents necessary to provide this data were unavailable at the time of this report submission.

Page 18

IV. Methodology Section

No unavoidable deviations from established protocols occurred during Year 3 monitoring.

Appendix A (Click here)

APPENDIX A 1. VEGETATION DATA TABLES

1. Vegetation Data Tables


Table 1. Vegetation Metadata		
Report Prepared By	Michael Lee	
Date Prepared	11/17/2006 11:4	9
database name	CVS_EEP_DataEntry_v202.mdb	
database location	C:\work\CVS-EEP	
DESCRIPTION OF WORKSHEE	TS IN THIS DOCUMENT	_
Metadata	This worksheet, which is a summary of the project and the project data.	
Plots	List of plots surveyed.	
Vigor	Frequency distribution of vigor classes.	
Vigor by Spp	Frequency distribution of vigor classes listed by species.	
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.	
Damage by Spp	Damage values tallied by type for each species.	
Damage by Plot	Damage values tallied by type for each plot.	
Stem Count by Plot and Spp	Count of living stems of each species for each plot; dead and missing stems are excluded.	
PROJECT SUMMARY		_
Project Code	Suck Creek	
project Name	Suck Creek	_
Description	Stream Restoration	
length (ft)		
stream-to-edge width (ft)		
area (sq m)		
Required Plots (calculated)		
Sampled Plots		9

_	Table 2. Vegetation	on Vigo	or by	Spe	cies		
	Species	4	3	2	1	0	Missing
	Alnus serrulata	4					
	Betula nigra	63	3				
	Celtis occidentalis	2					
	Cornus amomum		1				
[Diospyros virginiana	1					
	Fraxinus nigra		1				
	Fraxinus pennsylvanica	8	1				
	Liquidambar styraciflua	1					
	Pinus taeda	7					
	Quercus phellos	2					
	Salix nigra	12	8	2			
	Platanus occidentalis	9	1				
	Acer rubrum	1	3				
TOT:	13	110	18	2			

	Table 3. Vegetation Damage by Species												
		All Damage Categories	(no damage)	Deer	Drought	Insects	Site Too Dry	Unknown	(other damage)				
	Species												
	Acer rubrum	4	1	11					2				
	Alnus serrulata	4	2	2									
	Betula nigra	66	50	14		1		1					
	Celtis occidentalis	2	2										
	Cornus amomum	1		1									
	Diospyros virginiana	1	1										
	Fraxinus nigra	1		1									
	Fraxinus pennsylvanica	9	5	4									
	Liquidambar styraciflua	1	1										
	Pinus taeda	7	7										
	Platanus occidentalis	10	9						1				
	Quercus phellos	2	2										
	Salix nigra	22	14		1	1	3	2	1				
TOT:	13	130	94	23	1_	2	3	3	4				

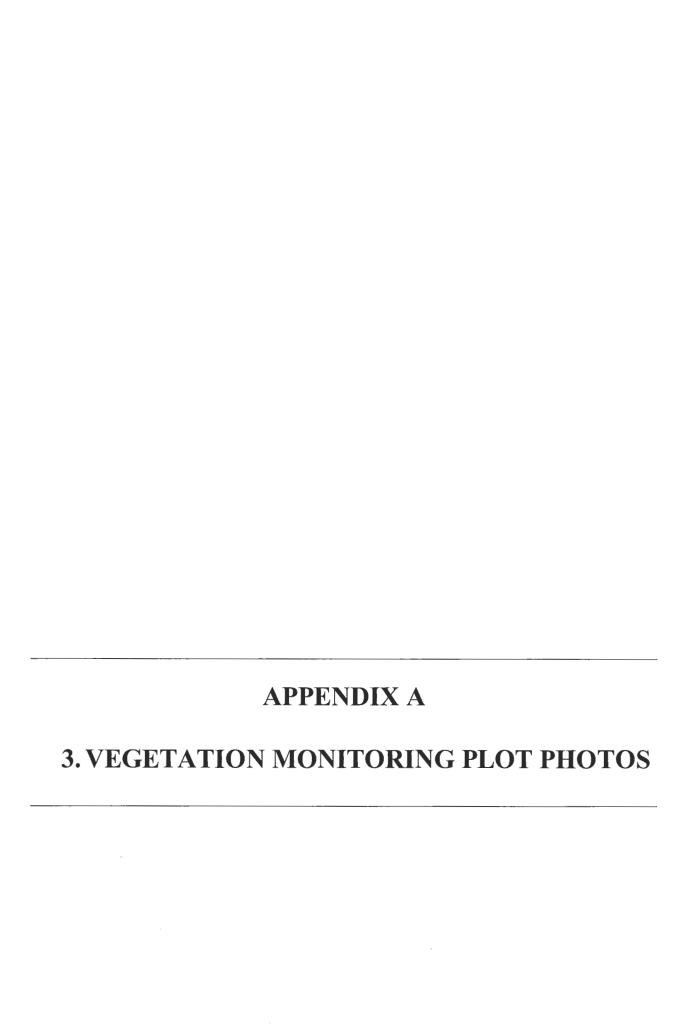
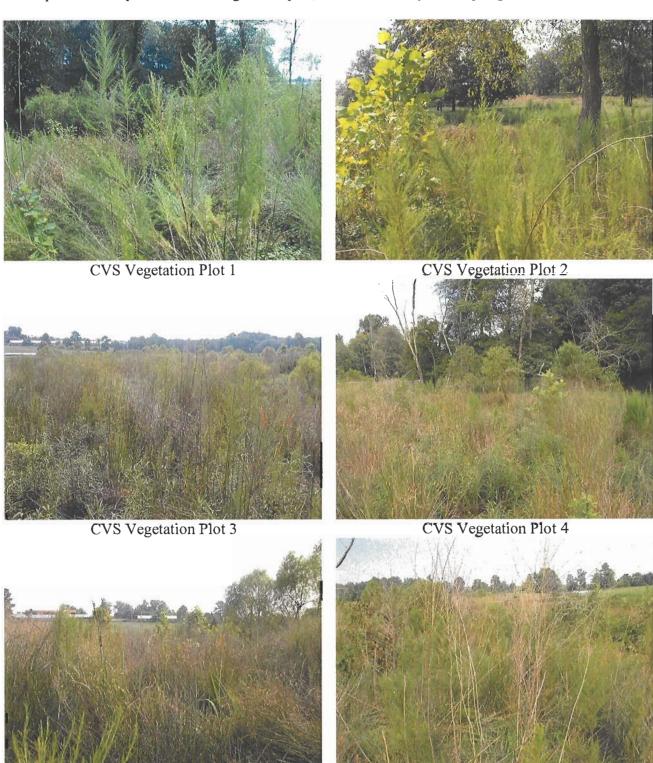

	Т	able 4. V	egetati	ion Da	ımage l	y Plot			
	plot	All Damage Categories	(no damage)	Deer	Drought	Insects	Site Too Dry	Unknown	(other damage)
	79-1-1T-								-
	1/1	6	5					1	
	79-1-2	15	9	3			1		2
	79-1-3	13	9				2	2	
	79-1-4	9	6	1					2
	79-1-5	7	5	2					
	79-1-6	33	21	9	1	2			
	79-1-7	18	14	4					
	79-1-8	28	25	3					
	79-1-9	1		1					
TOT:	9	130	94	23	1	2	3	3	4

	Table 5. Stem Count by Plot and Species												
	Species	Total Stems	# plots	avg# stems	plot 79-1-1T- 1/1	plot 79-1-2	plot 79-1-3	plot 79-1-4	plot 79-1-5	plot 79-1-6	plot 79-1-7	plot 79-1-8	plot 79-1-9
	Acer rubrum	4	2	2				3		1			
	Alnus serrulata	4	3	1.33				1		2		1	
	Betula nigra	66	6	11	1	9	1			16	13	26	
	Celtis occidentalis	2	2	1						1	1		
	Cornus amomum	1	1	1						1_			
	Diospyros virginiana	1	1	1					1				
	Fraxinus nigra	1	1	1		1							
	Fraxinus pennsylvanica	9	5	1.8			1		4		2	1	1
	Liquidambar styraciflua	1	1	1				1					
	Pinus taeda	7	4	1.75	1		3	2		1			
	Platanus occidentalis	10	4	2.5	2	2		1		5			
	Quercus phellos	2	2	1			1	1					
	Salix nigra	22	6	3.67	2	3	7		2	6	2		
TOT:	13	130	13	30.05	6	15	13	9	7	33	18	28	1


2. Vegetation Problem Area Photos

No vegetation problem areas were observed during the Year 3 monitoring.

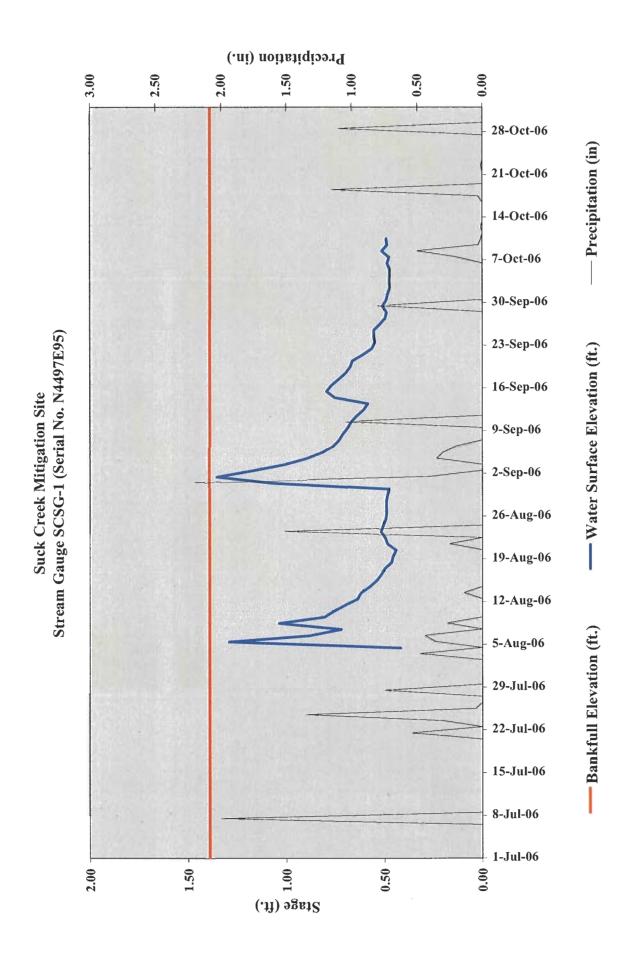
3. Vegetation Monitoring Plot Photos

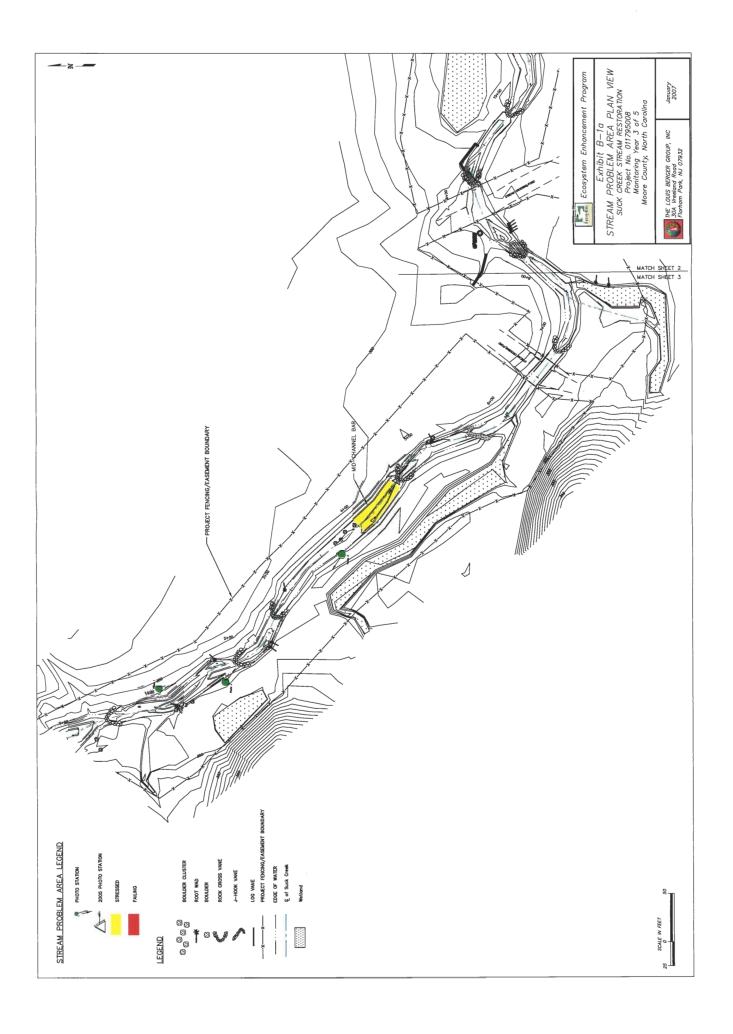
A representative photo of each vegetation plot, taken on the day of sampling, is shown.

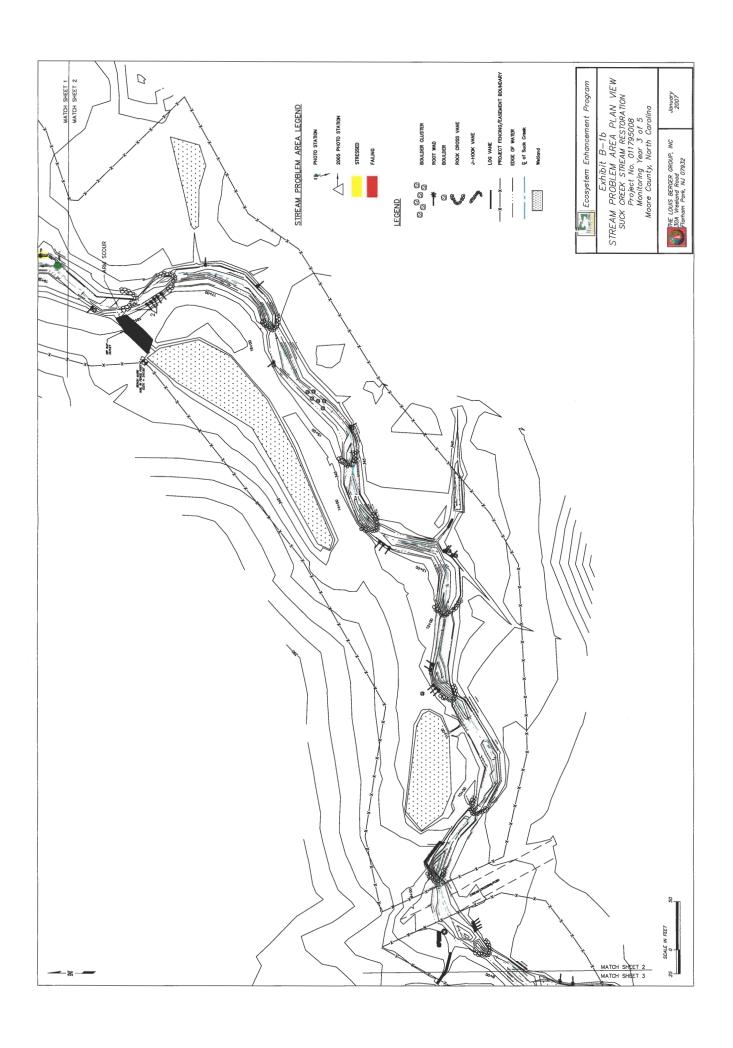
CVS Vegetation Plot 6

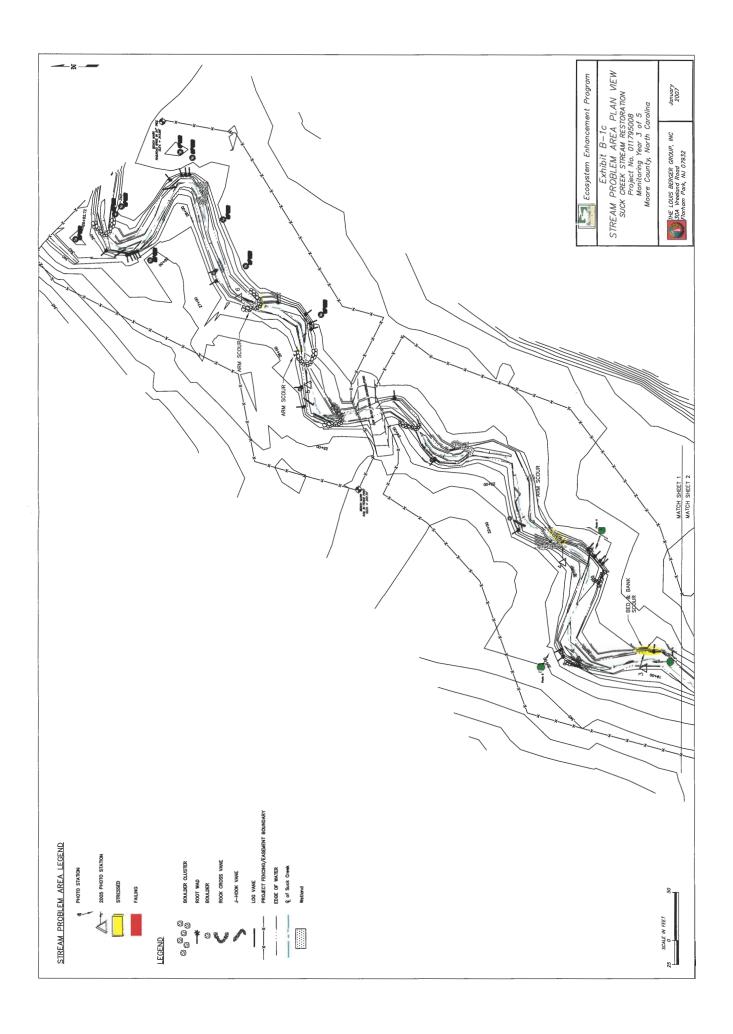
CVS Vegetation Plot 5

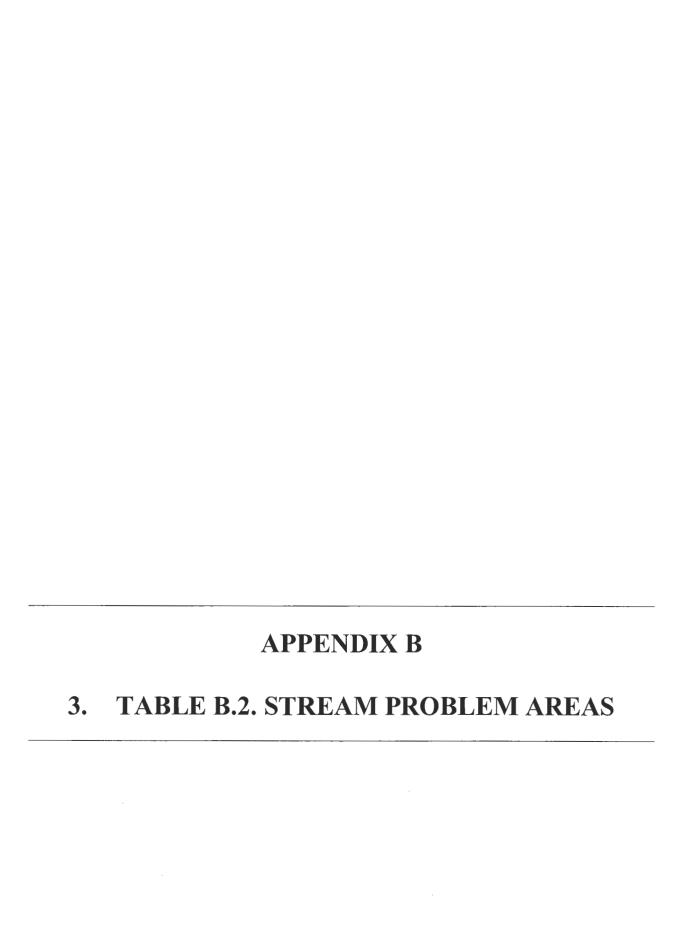
CVS Vegetation Plot 7


CVS Vegetation Plot 8


CVS Vegetation Plot 9


Appendix B (Click here)


APPENDIX B STREAM GAUGE DATA 1.



APPENDIX B 2. PROBLEM AREAS PLAN VIEW

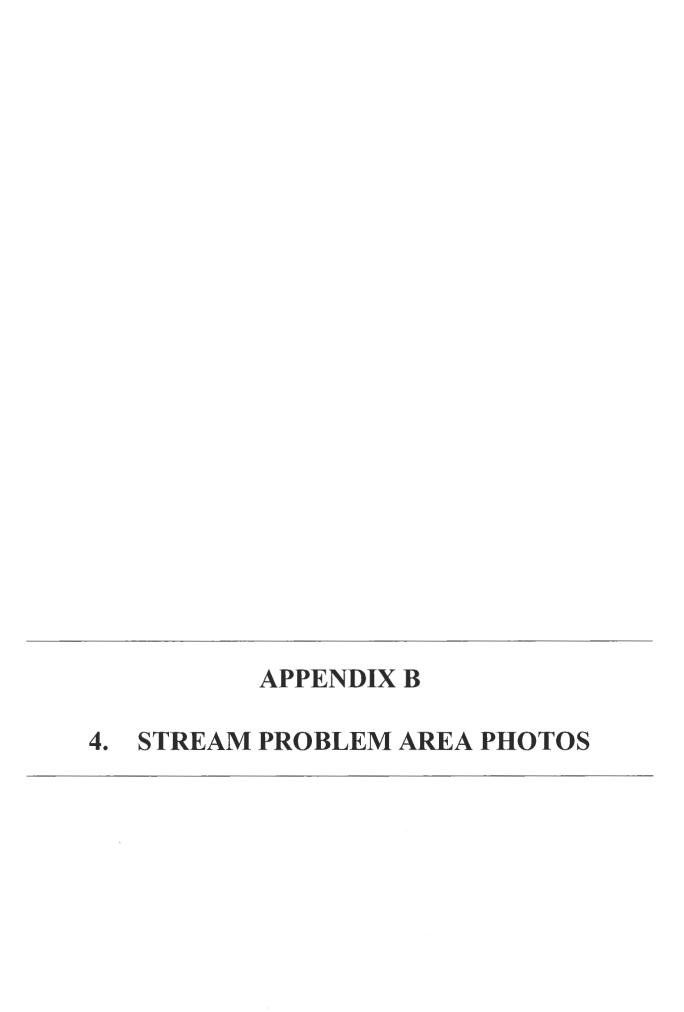
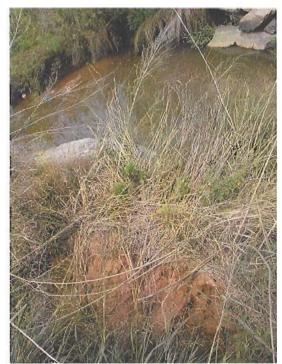


Table B.1. Stream Problem Areas Suck Creek Stream Restoration: Project No. 0117950008

Feature Issue	Station Numbers	Suspected Cause	Photo Number / ID	
Mid channel bar	4+00 to 4+60	Slope too slight to move sediment. More sediment has deposited and vegetation has established.	Station 4+00	
Cross Vane, arm scour	18+00	Large voids between rocks in vane. No change from prior year.	Station 18+00	
Root wad failure	19+10	Improper installation. Vegetation has established.	Station 19+10	
Cross Vane, arm scour	21+60	Large voids between rocks in vane. No change from prior year.	Station 21+60	
Cross Vane, arm scour	25+70	Large voids between rocks in vane. No change from prior year.	Station 25+70	
Cross Vane, arm scour	26+60	Large voids between rocks in vane. No change from prior year.		



4. Representative Stream Problem Area Photos

A photo of each structural problem area is shown with corresponding stationing.

Station 4+00

Station 18+00

Station 19+10

Station 21+60

Station 25+70

APPENDIX B 5. STREAM PHOTO-STATION PHOTOS

Stream Photo-Station Photos 5.

Photo Station 1

Photo Station 2

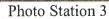


Photo Station 4

Photo Station 5

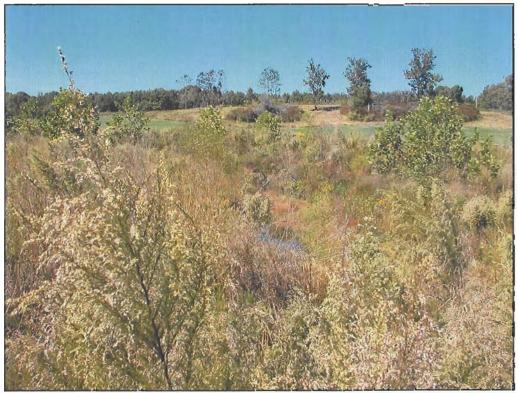
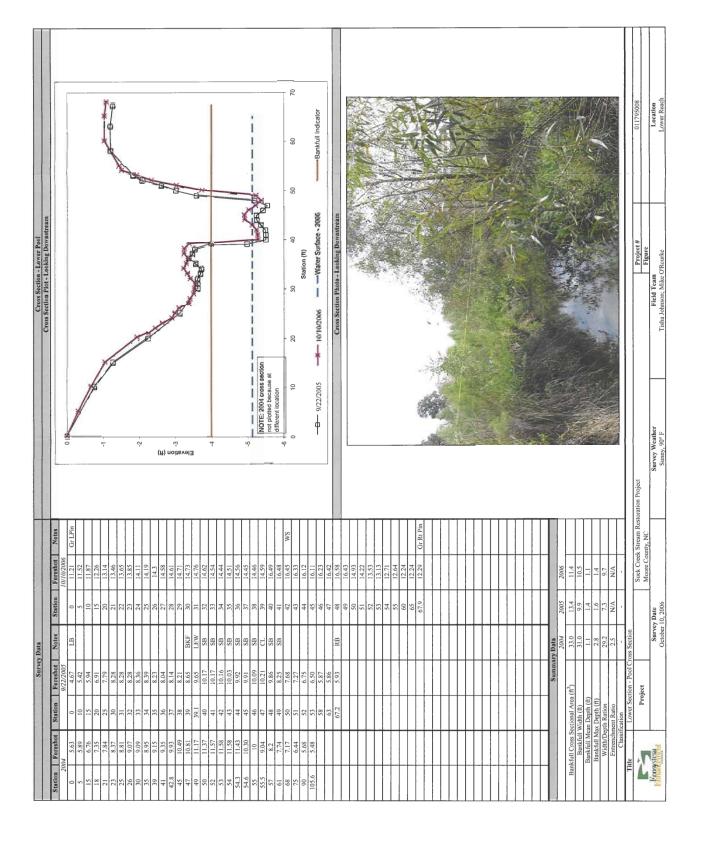
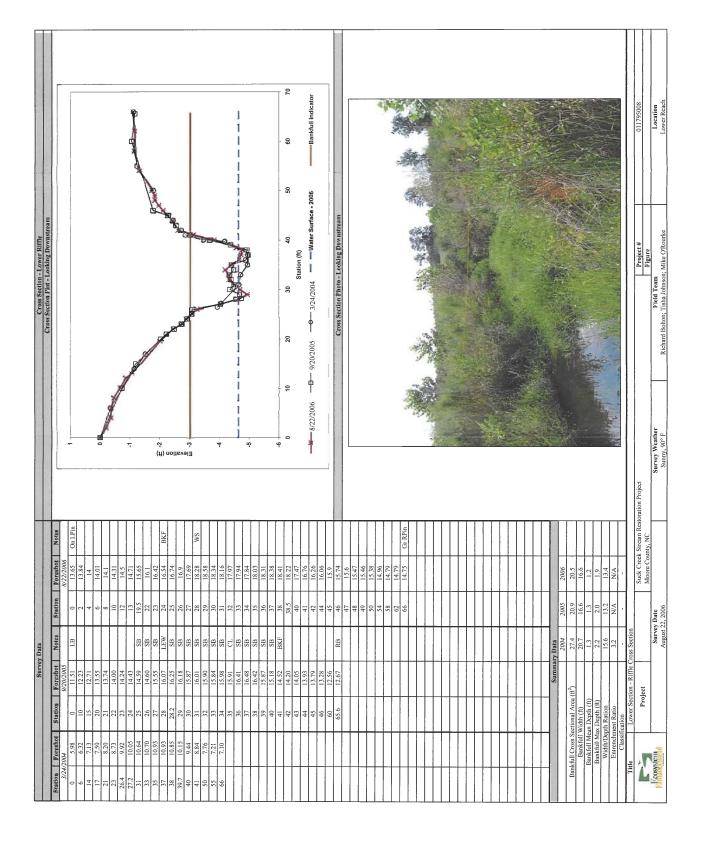


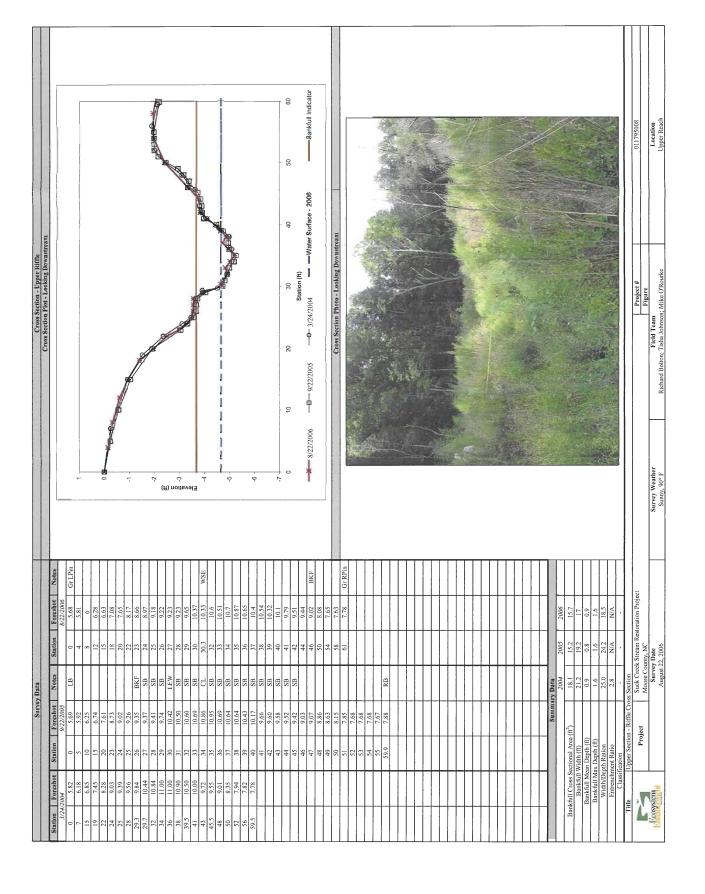
Photo Station 6

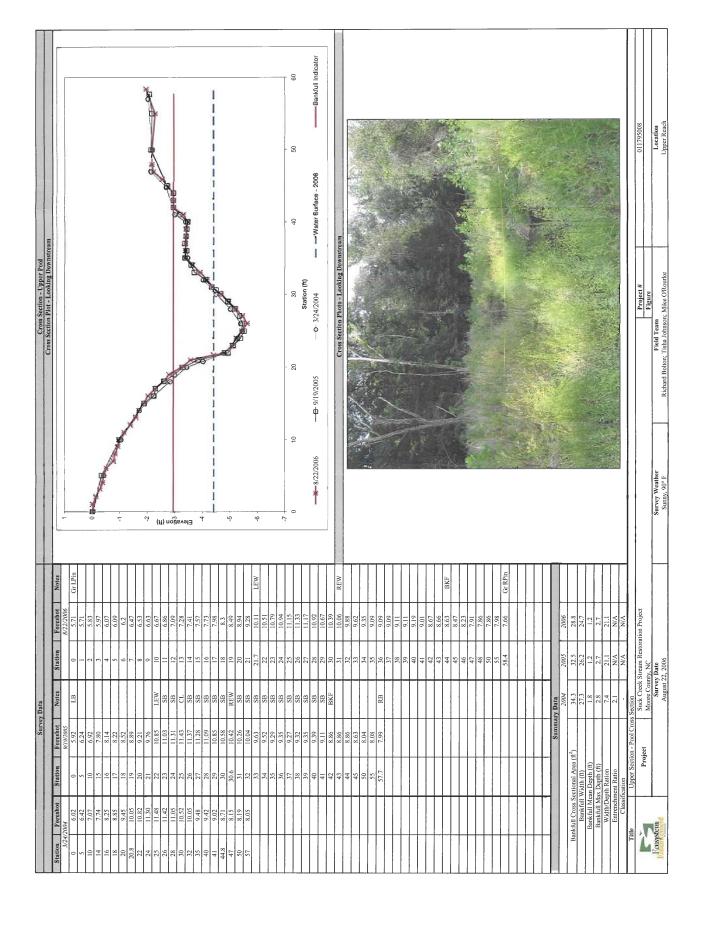
6. TABLE B.2. QUALITATIVE VISUAL STABILITY ASSESSMENT

6. Table B.2. Qualitative Visual Stability Assessment

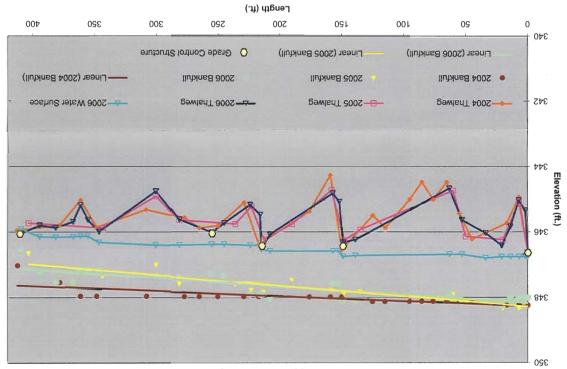

Table B.2.a. Visual Morphological Stability Assessment Suck Creek Stream Restoration - Upper Reach: 2,088 feet


Feature Category	Metric (per As-Built and reference baseline)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	7	8		88	
	2. Armor Stable?		0			
	3. Facet grade appears stable?	7	8		88	
	4. Minimal evidence of embedding / fining?	7	8		88	
	5. Length appropriate?	7	8		88	88
			SECTION			
B. Pools	1. Present?	7	8		88	
	2. Sufficient depth?	7	8		88	
	3. Length appropriate?	7	8		88	88
C. Thalweg	1. Upstream of meander bend centering?	8	8		100	
	Downstream of meander bend centering?	8	8		100	100
D. Meanders	Outer bend in state of limited / controlled erosion	7	7		100	
	2. Of those eroding, # w/concomitant point bar formation?					
	3. Apparent Rc within spec?	7	7		100	
	4. Sufficient Floodplain Access and Relief?	7	7		100	100
	General channel bed aggradation			00/050		
E. Bed General	areas?		ļ	60/850	93	
	2. Channel bed degradation?		BASSINE S	0/850	100	96
		_			100	
F. Vanes	1. Free of back or arm scour?	7	7		100	
	2. Height appropriate?	7	7		100	
	3. Angle and geometry appear appropriate?	7	7		100	
	Free of piping or other structural failures?	7	7		100	100
G. Wads /	4.5	-	_		400	
Boulders	1. Free of Scour?	7	7		100	100
	2. Footing Stable?	7	7		100	100


Table B.2.b. Visual Morphological Stability Assessment Suck Creek Stream Restoration - Lower Reach: 875 feet


Feature Category	Metric (per As-Built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	23	23		100	
	2. Armor Stable?		0			
	3. Facet grade appears stable?	20	23		87	
	4. Minimal evidence of embedding /					
	fining?	20	23		87	
	5. Length appropriate?	23	23		100	93.5
			HE MINES		100	
B. Pools	1. Present?	24	24		100	
	2. Sufficient depth?	24	24		100	
	3. Length appropriate?	24	24		100	100
C. Thalweg	Upstream of meander bend centering?	21	21		100	
	Downstream of meander bend centering?	21	21		100	100
	1. Outer bend in state of limited /	A place yell also stock		BIRLER		AMARAS
D. Meanders	controlled erosion	20	21		95	
	2. Of those eroding, # w/concomitant point bar formation?	21	21		100	
	3. Apparent Rc within spec?	21	21		100	
	4. Sufficient Floodplain Access and Relief?	21	21		100	99
E. Bed	1 Canaval shannal had aggradation					
General	General channel bed aggradation areas?		0/2000		100	
Ochiciai	2. Channel bed degradation?		0/2000		100	100
	GATE VANDE SEE SEE SEE SEE SEE SEE		Minney many			
F. Vanes	1. Free of back or arm scour?	15	19		79	
	2. Height appropriate?	17	19		90	
	Angle and geometry appear appropriate?	19	19		100	
	Free of piping or other structural failures?	14	19		73	85
G. Wads /		614635				RESIDE TO SE
Boulders	1. Free of Scour?	25	26		96	
Doulders	2. Footing Stable?	25	26	 	96	96

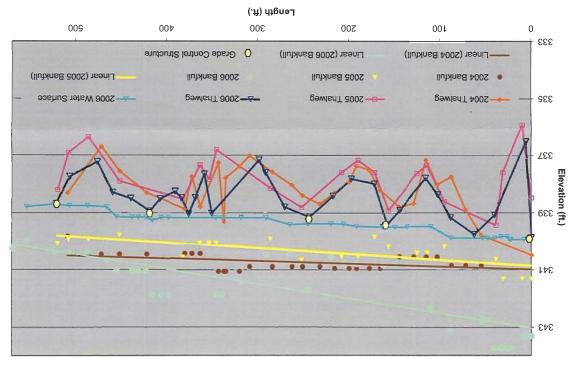
7. CROSS SECTION PLOTS AND RAW DATA TABLES


8. LONGITUDINAL PLOTS AND RAW DATA TABLES

Longitudinal Profiles

$Longitudinal\ Profile-Upper\ Reach$

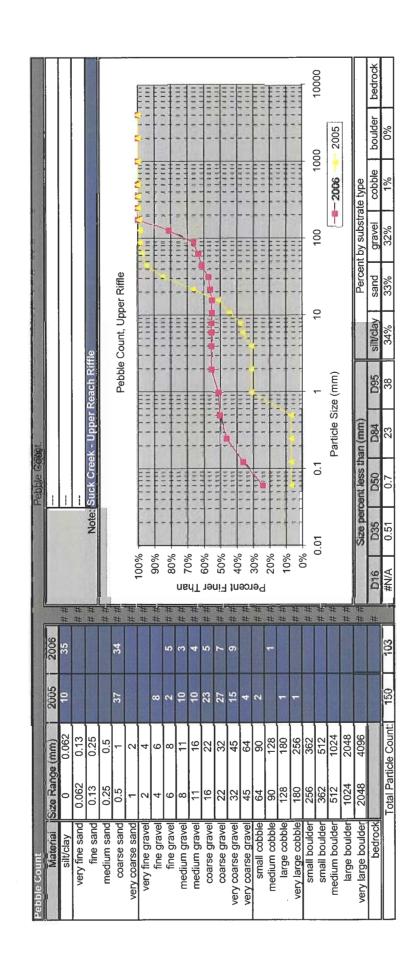
10 4100 <u>0</u>	20033 2040///		r Longitudinal Prof				
Depth at Bankfull	Water Surface Slope	Bankfull Elevation	Water	Thalweg	Feature Length	Station	Feature
.Ħ	.17\.17	.ft.	.ft.	.Ħ	.ft.	.m	11.00
8£.1		348.00	346.75	346.64		0	ross Vane - Top
29.2	00.0	348.00	34.348	345.35	τι	2	looq
96.2		348.00	346.75	345.04		2.7	1009
2.16	00.0	348.00	346.75	345.84		ÞΙ	Glide
28.1	⊅ 0.0	348.24	346.75	346.42	13	12	Riffle
2.09	11.0-	848.13	67.9 ₽ £	346.04	61	34	uny
64.S	40.0	348.13	89.946	345.64	98	23	loo9
52.8		16.748	346.68	344.68		63	loo9
88.↑	60.0	348.11	346.72	346.25	01	139	Glide
87.1	91.0-	348.11	346.75	346.33	3	671	Riffle
74.2	00.0	347.57	69.9 1 £	345.10	99	152	Pool
2.73		78.748	69.948	344.84		157	1009
36.1	90.0-	348.04	69.948	60.948	7	802	Glide
9£.↑	21.0-	347.90	346.54	346.54	l	215	Riffle
4.2	£0.0-	347.90	346.42	345.50	58	216	loo9
7.2		347.90	346.42	345.20		224	loo9
83.1	00.0	56.748	86.346	346.75	01	245	Glide
2.1	20.0	347.23	6£.3₽£	346.03	97	592	Riffle
£7.1	60.0-	7£.74£	14.848	345.64	99	182	Pool
19.2		347.37	346.40	344,76		300	Pool
2.1	er.o-	91.74E	346.32	342.99	6	346	Riffle
93.1	20.0	91.74E	81.948	345.63	12	322	Pool
10.2		91.748	846.13	345.18		198	loo9
88.1	10.0	347.57	346.15	69.345	ひし	367	Glide
79.1	10.0-	48.748	346.16	345.87	13	188	Riffle
44.1	⊅ Z.0-	347.24	346.15	345.80	91	394	пиЯ


Suck Creek - Upper Reach Long Profile

Longitudinal Profile - Lower Reach

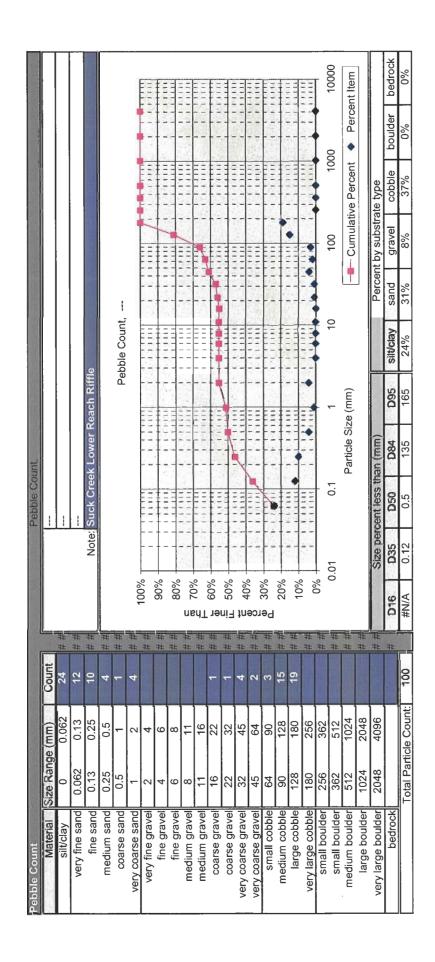
Depth at	Water Surface	Bankfull	Water	Thalweg	Feature	:,,3	
Bankfull	Slope	Elevation	Elevation	Elevation	rength	Station	Feature
-11	.JT/.JT	.11	.n	.11	-u	.n	- 9nsV eand
2.86		342.74	68.688	38.688		0	qoT
52.8	00.0	342.74	98.688	336.52	07	9	Pool
4.05	00.0	343.14	83.658	339.09	22	07	Glide
2.54	04.0-	342.31	98.688	339.77	56	79	Riffle
99.1	00.0	340.84	339.49	81.688	Þl	88	unЫ
2.46	00.0	340.84	84.688	338.38	42	102	Pool
3.03		340.84	339.49	18.755		115	Pool
98.1	60.0-	97.048	339.49	338.90	Þl	bbl	Glide
9£.1	80.0-	97.048	34.688	339.40	Þl	158	unŊ
75.2	10.0-	340.56	88.988	96.755	97	172	Pool
88.£		341.70	75.955	337.52		761	Pool
2.06	60.0	340.47	75.655	14.888	56	217	Glide
££.1	₽Z.O-	74.048	339.40	41.688	7.2	243	Riffle
2.64	00.0	54.148	31.688	93.885	21	270	Run
7 <u>2.</u> 4	00.0	78.14E	31.688	337.60	LL	162	Pool
7.4		78.14E	31.688	71.755		862	Pool
2.86		341.87	31.988	10.688		320	Pool
42.4		98.148	31.988	337.65		328	Pool
3,42	01.0	98.148	31.688	74.888	L	368	Glide
2.01	11.0-	341.04	339.26	50.655	8	375	Piffle
75.5	00.0	341.04	31.988	74.888	24	585	loo9
2.79		341.04	31.988	338.25		390	Pool
2.53	10.0-	341.04	31.988	338.51	11	704	Glide
79.1	-0.35	19.048	41.688	46.888	21	814	Riffle
78.1	40.0-	340.37	67.8EE	338.50	50	439	иnЫ
2.08	90.0-	340.37	338.75	838.29	L Þ	697	loo9
41.5		340.37	338.75	82.788		927	Pool
2.24	80.0	39.98	338.70	47.788	12	909	Glide
73.1		340.25	338.78	338.68		179	Piffle

Suck Creek - Lower Reach Long Profile



Monitoring Year 2 of 5 (2005)

9. PEBBLE COUNT PLOTS AND RAW DATA TABLES


9. Sediment Distribution

Upper Riffle Cross Section

The Louis Berger Group, Inc.

Lower Riffle Cross Section

